ADAPTIVE SIGNAL CONTROL
FOR CORRIDOR MANAGEMENT

AASHTO – SCOTE Meeting
Savannah, GA
June 6, 2016
Presentation Overview

- Overview on Adaptive Signal Control
 - ASC Technology Defined
 - Data-Driven Traffic Management
 - Systems Engineering Process
 - Types of ASC Systems

- ASC Corridor Management Examples
 - Wakefield – I-95 at Salem St./Audubon Rd.
 - Dartmouth – I-195 at Faunce Corner Rd.
 - Framingham – Route 126 at Route 135
 - Burlington – Middlesex Turnpike

- Why use Adaptive Signal Control?
 - Where to use ASC
 - Stated Benefits of ASC
 - Importance of Communication
 - The “Not So Good” side of ASC
 - Open Discussion
What is Adaptive Signal Control?

- ASC Technology (ASCT) is an operations strategy utilized to address traffic signal progression.
- It is far more dynamic as it uses real-time data collected from the corridor detectors to evaluate volume demand and assign green times for optimal progression.
- Requires a communication medium to link the intersections together and capture the detection data to generate the adaptive functions.

Source: wvgazettemail.com
Data Driven Traffic Management

Adaptive, Real-Time Traffic Control

- Sense conditions:
 - Vehicle, pedestrian probes
 - Infrastructure sensors
 - Vehicle destinations

- Characterize congestion
- Identify prioritization needs

Install new timing plans

Adjust signal timings

Continual Optimization of Traffic Flows

- Extract traffic flow patterns and trends
- Refine & optimize coordinated timing plans

Guidance to Vehicles

Source: saveoakhill.com
FHWA has developed a systematic process to help DOT’s guide the ASCT implementation decisions
Types of ASC Systems

- SCOOT MMX (2010)
- SCATS (40+ years)
- ACS Lite (Arterials)
- Centracs (works w/ATMS)
- InSync (the “Black Box” approach)
- SynchroGreen (very adaptable)
Massachusetts Experience - Wakefield

Implemented in Summer 2015
Wakefield – ASC System

○ 5 Intersections (2 State Owned / 3 Town Owned)

○ Prior to installation, traffic would back up on highway ramps during peak hours due to difficulty coordination signal operations

○ Added Fleur Cameras to better manage detection in all weather conditions

○ With “Full Access” provided to the District Traffic Operations Engineer – adjustments can be made on the fly

○ SynchroGreen system
Wakefield – Remote Monitoring

Real-Time access to monitor signal detection and troubleshoot problems
Wakefield – SynchroGreen System

- How is the SynchroGreen ASC System working?
 - The traditional backups that would occur on a weekly basis during the commuting hours have dropped down to very manageable conditions
 - Public Feedback has been positive
 - District 4 Office and Town of Wakefield are very happy with system
Massachusetts Experience - Dartmouth

Faunce Corner Road: I-95 to Route 6

Adaptive System added as part of a bridge replacement & corridor project with new signalization of WB Ramps

Under Construction – Summer 2016
Dartmouth – ASC-Lite System

- 6 Intersections (4 State Owned / 2 Town Owned)
- Existing condition has congestion associated to mall, shopping plaza, college and hospital traffic all converging on this road connecting I-195 to Route 6
- All Cabinets will utilize Eagle Controllers and ACS-Lite
Dartmouth – ACS-Lite Configuration

- System will run 3 ASC plans that will address traditional peaks (M-F) and Weekends
 - Holiday Traffic Plans will be implemented mid November till mid January

- Agreement with the Town of Dartmouth for MassDOT to control their signals

- Alerts configured to notify Town directly of Comm failures
Massachusetts Experience - Framingham

- 5 Intersections (all Town owned)
 - Two north of the roundabout in the Town Center
 - Three south of the center with an at-grade RxR Crossing
 - Medical Center (North)
 - Fire Stations (North & South)
 - Police Station (North)
Framingham – Need for ASC

- Part of a Downtown Revitalization project
- Traffic Statistics
 - Route 126 – Concord St. 17,500 veh/day
 - Route 135 – Waverly St. 16,000 veh/day
- At-Grade RxR Crossing
 - Commuter Rail (50 per day)
 - CSX Freight (6-12 per day)
 - Amtrak Service (2 per day)
- Signal Preemption
 - Main corridor for EMS

Under Construction – Summer 2016
Framingham – ASC-Lite System

- Hybrid Adaptive Operation
 - Not an off-the-shelf implementation
 - Provides “On-Demand” Coordination

- Each Cycle is referenced to unique and dynamic reference point
 - Service preemptions as they occur
 - No recovery after preemption

- System Cycle Length
 - May change on a 5-minute horizon with a classic traffic responsive algorithm
 - Split times are adaptive
 - Uses donor and receiver phases to level off system
 - Exclusive Ped Phases – integral to cycle
Massachusetts Experience - Burlington

27 Intersections --> 11 State Owned / 16 Town Owned

Coming Soon – Starting Summer 2016
Burlington – Need for ASC System

- 27 Intersections (11 State Owned / 16 Town Owned)
- The area is right off of I-95 and Route 3, two major routes in Massachusetts and heavily influenced by commuter traffic
- This the Town’s business district with an abundance of corporate office complexes, moderate sized businesses and lots of retail/commercial development
- Outside of the peak hours, the area experiences high traffic volumes most of the day with the mall, shopping plazas, entertainment venues and many restaurants in addition to a large medical clinic and rehabilitation center
Burlington – SynchroGreen System

○ Run the 27 locations as three distinct sub-sections
 - Middlesex Turnpike South (7 intersections)
 - Middlesex Turnpike North (4 intersections)
 - Burlington Mall Road/Cambridge St. (16 intersections)

○ Communication Medium
 - Fiber Optic Cable
 - Copper Cable
 - Ethernet Patch
 - VPN Connection

○ ASC timing plans will have a wide variability in cycle lengths to address traffic demand
Where does ASCT make sense?

- Reacts to “unpredictable” corridor traffic flow
- Provides green time progression to reduce unnecessary stop delays
- Not intended for all situations, especially commuter routes that have daily directional peaks
- Reductions in delays are good for the environment and promote good driver behavior
Benefits of ASCT

- Adaptive signal control systems use real-time traffic data and can adjust to events that cannot be anticipated by traditional time-of-day timing plans:
 - Vehicle Crashes
 - Special Events
 - Road Maintenance/Construction

- ASCT helps improve the quality of service that travelers experience on our local roads and highways:
 - Less unnecessary delays
 - Traffic moves efficiently and smoothly
Importance of Communication

Breakdown in Communications returns the system to normal static time-of-day operations.
The “Not So Good Side” of ASC

- **Cost to Implement**
 - ASC Hardware/Software
 - Annual or Monthly License Fees
 - Additional detection needed to run
 - Communication between intersections

- **Not really just “Plug and Play”**
 - Existing Sequence and Timing charts should be evaluated to current traffic demand to establish the baseline
 - Need to establish Adaptive Timing Plans and parameters for adjusting signal (splits, offsets, cycle lengths)
 - System should be monitored to ensure all detection and communication devices are operational

- **Public and Adaptive Signal Control**
 - Be careful of what you promise
 - Technology can help, but will not solve everything
Contact Information:

Neil Boudreau, State Traffic Engineer
Phone: (857) 368-9655
Email: neil.boudreau@state.ma.us